Surface Faceting and Reconstruction of Ceria Nanoparticles
نویسندگان
چکیده
منابع مشابه
Toward tuning the surface functionalization of small ceria nanoparticles.
Understanding and controlling the performance of ceria nanoparticle (CNP) catalysts requires knowledge of the detailed structure and property of CNP surfaces and any attached functional groups. Here we report thermogravimetric analysis results showing that hydrothermally synthesized ∼30 nm CNPs are decorated with 12.9 hydroxyl groups per nm(2) of CNP surface. Quantum mechanical calculations of ...
متن کاملHigh resolution mapping of surface reduction in ceria nanoparticles.
Surface reduction of ceria nano octahedra with predominant {111} and {100} type surfaces is studied using a combination of aberration-corrected Transmission Electron Microscopy (TEM) and spatially resolved electron energy-loss spectroscopy (EELS) at high energy resolution and atomic spatial resolution. The valency of cerium ions at the surface of the nanoparticles is mapped using the fine struc...
متن کاملSurface faceting and elemental diffusion behaviour at atomic scale for alloy nanoparticles during in situ annealing
The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of cataly...
متن کاملFaceting of a growing crystal surface by surface diffusion.
Consider faceting of a crystal surface caused by strongly anisotropic surface tension, driven by surface diffusion and accompanied by deposition (etching) due to fluxes normal to the surface. Nonlinear evolution equations describing the faceting of 1+1 and 2+1 crystal surfaces are studied analytically, by means of matched asymptotic expansions for small growth rates, and numerically otherwise. ...
متن کاملEmbedding Ultrafine and High‐Content Pt Nanoparticles at Ceria Surface for Enhanced Thermal Stability
Ultrafine Pt nanoparticles loaded on ceria (CeO2) are promising nanostructured catalysts for many important reactions. However, such catalysts often suffer from thermal instability due to coarsening of Pt nanoparticles at elevated temperatures, especially for those with high Pt loading, which leads to severe deterioration of catalytic performances. Here, a facile strategy is developed to improv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Angewandte Chemie International Edition
سال: 2016
ISSN: 1433-7851
DOI: 10.1002/anie.201609179